133 research outputs found

    Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration

    Get PDF
    BACKGROUND: Mechanical guidance with a robotic device is a candidate technique for teaching people desired movement patterns during motor rehabilitation, surgery, and sports training, but it is unclear how effective this approach is as compared to visual demonstration alone. Further, little is known about motor learning and retention involved with either robot-mediated mechanical guidance or visual demonstration alone. METHODS: Healthy subjects (n = 20) attempted to reproduce a novel three-dimensional path after practicing it with mechanical guidance from a robot. Subjects viewed their arm as the robot guided it, so this "haptic guidance" training condition provided both somatosensory and visual input. Learning was compared to reproducing the movement following only visual observation of the robot moving along the path, with the hand in the lap (the "visual demonstration" training condition). Retention was assessed periodically by instructing the subjects to reproduce the path without robotic demonstration. RESULTS: Subjects improved in ability to reproduce the path following practice in the haptic guidance or visual demonstration training conditions, as evidenced by a 30–40% decrease in spatial error across 126 movement attempts in each condition. Performance gains were not significantly different between the two techniques, but there was a nearly significant trend for the visual demonstration condition to be better than the haptic guidance condition (p = 0.09). The 95% confidence interval of the mean difference between the techniques was at most 25% of the absolute error in the last cycle. When asked to reproduce the path repeatedly following either training condition, the subjects' performance degraded significantly over the course of a few trials. The tracing errors were not random, but instead were consistent with a systematic evolution toward another path, as if being drawn to an "attractor path". CONCLUSION: These results indicate that both forms of robotic demonstration can improve short-term performance of a novel desired path. The availability of both haptic and visual input during the haptic guidance condition did not significantly improve performance compared to visual input alone in the visual demonstration condition. Further, the motor system is inclined to repeat its previous mistakes following just a few movements without robotic demonstration, but these systematic errors can be reduced with periodic training

    Computational neurorehabilitation: modeling plasticity and learning to predict recovery

    Get PDF
    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling – regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity

    Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy

    Get PDF
    This paper describes the development of a novel control system for a robotic arm orthosis for assisting patients in motor training following stroke. The robot allows naturalistic motion of the arm and is as mechanically compliant as a human therapist's arms. This compliance preserves the connection between effort and error that appears essential for motor learning, but presents a challenge: accurately creating desired movements requires that the robot form a model of the patient's weakness, since the robot cannot simply stiffly drive the arm along the desired path. We show here that a standard model-based adaptive controller allows the robot to form such a model of the patient and complete movements accurately. However, we found that the human motor system, when coupled to such an adaptive controller, reduces its own participation, allowing the adaptive controller to take over the performance of the task. This presents a problem for motor training, since active engagement by the patient is important for stimulating neuroplasticity. We show that this problem can be solved by making the controller continuously attempt to reduce its assistance when errors are small. The resulting robot successfully assists stroke patients in moving in desired patterns with very small errors, but also encourages intense participation by the patient. Such robot assistance may optimally provoke neural plasticity, since it intensely engages both descending and ascending motor pathways. © 2007 IEEE

    Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training

    Get PDF
    ABSTRACT: BACKGROUND: Manual body weight supported treadmill training and robot-aided treadmill training are frequently used techniques for the gait rehabilitation of individuals after stroke and spinal cord injury. Current evidence suggests that robot-aided gait training may be improved by making robotic behavior more patient-cooperative. In this study, we have investigated the immediate effects of patient-cooperative versus non-cooperative robot-aided gait training on individuals with incomplete spinal cord injury (iSCI). METHODS: Eleven patients with iSCI participated in a single training session with the gait rehabilitation robot Lokomat. The patients were exposed to four different training modes in random order: During both non-cooperative position control and compliant impedance control, fixed timing of movements was provided. During two variants of the patient-cooperative path control approach, free timing of movements was enabled and the robot provided only spatial guidance. The two variants of the path control approach differed in the amount of additional support, which was either individually adjusted or exaggerated. Joint angles and torques of the robot as well as muscle activity and heart rate of the patients were recorded. Kinematic variability, interaction torques, heart rate and muscle activity were compared between the different conditions. RESULTS: Patients showed more spatial and temporal kinematic variability, reduced interaction torques, a higher increase of heart rate and more muscle activity in the patient-cooperative path control mode with individually adjusted support than in the non-cooperative position control mode. In the compliant impedance control mode, spatial kinematic variability was increased and interaction torques were reduced, but temporal kinematic variability, heart rate and muscle activity were not significantly higher than in the position control mode. CONCLUSIONS: Patient-cooperative robot-aided gait training with free timing of movements made individuals with iSCI participate more actively and with larger kinematic variability than non-cooperative, position-controlled robot-aided gait training

    Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology

    Get PDF
    Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects. Methods: We employ dynamic time warping for curve registration to quantify two aspects of movement variability: 1) variability of the timing of the accelerometer signals' characteristics and 2) variability of the signals' magnitude. Six stroke patients and six matched controls performed several trials of a unilateral ('drinking') and a bilateral ('moving a plate') functional task on two different days, approximately 1 month apart. Group differences for the two variability metrics were investigated on both days. Results: For 'drinking from a glass' significant group differences were obtained on both days for the timing variability of the acceleration signals' characteristics (p = 0.002 and p = 0.008 for test and retest, respectively); all stroke patients showed increased signal timing variability as compared to their corresponding control subject. 'Moving a plate' provided less distinct group differences. Conclusion: This initial application establishes that movement variability metrics, as determined by our methodology, appear different in stroke patients as compared to matched controls during unilateral task performance ('drinking'). Use of a user-friendly, inexpensive accelerometer makes this methodology feasible for routine clinical evaluations. We are encouraged to perform larger studies to further investigate the metrics' usefulness when quantifying levels of impairment
    corecore